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Surface waves superimposed upon a larger-scale flow are blocked at the points where 
the group velocities balance the convection by the larger-scale flow. Two types of 
blockage, capillary and gravity, are investigated by using a new multiple-scale 
technique, in which the short waves are treated linearly and the underlying larger- 
scale flows are assumed steady but can have a considerably curved surface and 
uniform vorticity . The technique first provides a uniformly valid second-order 
ordinary differential equation, from which a consistent uniform asymptotic solution 
can readily be obtained by using a treatment suggested by the result of Smith (1975) 
who described the phenomenon of gravity blockage in an unsteady current with 
finite depth. 

The corresponding WKBJ solution is also derived as a consistent asymptotic 
expansion of the uniform solution, which is valid a t  points away from the blockage 
point. This solution is obviously represented by a linear combination of the incident 
and reflected waves, and their amplitudes take explicit forms so that it can be shown 
that even with a significantly varied effective gravity g’ and constant vorticity, wave 
action will remain conserved for each wave. Furthermore, from the relative 
amplitudes of the incident and reflected waves, we clearly demonstrate that the 
action fluxes carried by the two waves towards and away from the blockage point are 
equal within the present approximation. 

The blockage of gravity-capillary waves can occur a t  the forward slopes of a finite- 
amplitude dominant wave as suggested by Phillips (1981). The results show that the 
blocked waves will be reflected as extremely short capillaries and then dissipated 
rapidly by viscosity. Therefore, for a fixed dominant wave, all wavelets shorter than 
a limiting wavelength will be suppressed by this process. The minimum wavelengths 
coexisting with the long waves of various wavelengths and slopes are estimated. 

1. Introduction 
The growth and decay of gravity-capillary waves within a variety of sea surface 

conditions have received increasing attention recently owing to the application of 
remote sensing techniques. The principles of operation of various sensing devices and 
the characteristics of the sea surface that influence the return signals are reviewed in 
Phillips (1988). There are many mechanisms by which energy of the short 
gravity-capillary waves is produced, dissipated and redistributed. Among these, the 
interaction between long and short waves can cause modulation in both amplitude 
and wavelength of the short waves (Longuet-Higgins 1987 and Henyey et al. 1988 
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have recently re-examined this problem). Another relevant phenomenon is the 
modulation and blockage of short waves by the surface velocity distribution 
produced by underlying internal waves, which create a special surface-roughness 
pattern with periodic bands as has been observed both visually and with radars. An 
even more dramatic change, which occurs in certain circumstances, is the blockage 
and subsequent suppression of the short gravity-capillary waves by a dominant 
gravity wave near its crests, suggested first by Phillips (1981). 

I n  an asymptotic analysis in a system of orthogonal curvilinear coordinates, 
Phillips (1981) has shown that the effects of a finite-amplitude long wave on short 
wave can be represented by an effective gravitational acceleration g’, which is the 
component of the true acceleration g normal to the moving surface of the long wave 
plus the centripetal acceleration arising from a curved surface of the long wave. With 
the use of g’ instead of 9, Phillips found that the modulation of a linear short wave 
by a steady long, finite-amplitude dominant wave is precisely analogous with that by 
a steady and slowly varying current. Therefore, in a frame of reference moving with 
the long wave, the observed frequency of the short wave 

(1 .1)  no = B+ kU = constant, 

with 0- = (g’k+yk3):,  (1.2) 

where U is the tangential surface velocity representing the resultant of the long-wave 
orbital velocity and the velocity arising from the translation of the frame of 
reference. Expression (1.2) represents the relation between the local intrinsic 
frequency cr and the wavenumber k of the short wave, which, except for the use of 
g’, is exactly analogous to the dispersion relation for a level mean surface. Now if the 
long and short waves propagate in the same direction, then U will be negative while 
k and cr are positive, and since the magnitude of the convective velocity U is in 
general greater than the phase velocity of the short wave, from (1.1) the apparent 
frequency no will be negative. From these results, Phillips (1981) concluded that 
‘with a dominant wave of sufficient steepness (though not necessarily breaking) short 
dispersive components are unable to propagate past the dominant wave crest ’. 

The kinematics of this process are illustrated in figure 1, where the two solution 
points labelled A and B are the intersections of the straight line 

m = no-Uk (1.3) 

with the curve (1.2). The solution A represents a gravity wave while the solution B 
corresponds to a capillary wave. However, as lq and therefore the slope of the 
straight line (1.3) gradually decreases along the long-wave profile, points A and B in 
figure 1 will approach each other. Then for sufficiently weak U ,  which may occur near 
the crest of a steep long wave, the solution points A and B will eventually coalesce. 
If U further reduces, there will be no real solution for k, so that the wave pattern is 
confined to one side of the coalescence point. 

On the other hand, since the group velocity C, is equal to the slope of the tangent 
of the curve cr = (g’k+yk3)i  versus k ,  figure 1 also indicates that the characteristic 
velocity U+C, is negative for point A and positive for B ;  the point where A and B 
coalesce then corresponds to the blockage point where the group velocity C, exactly 
balances the convection U. Therefore, i t  is possible for the gravity wave A to be 
reflected as the capillary wave B (or vice versa). 

The above situation reminds us of the phenomenon of gravity blockage by a larger- 
scale current (see, for example, Peregrine 1976 and Mei 1983). Such a phenomenon 
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t 

FIGURE 1. Solutions of the kinematical conservation equation for given no. The variations of k ,  and 
k,  can be traced by a change of U and therefore the slope of the straight line m = no-Uk. 

was first recognized by Unna (1942), though a detailed analysis of its dynamics was 
not available until the work by Smith (1975). In careful expansions of the equations 
and solution, Smith has successfully obtained a uniformly valid asymptotic solution 
of the original boundary-value problem, which indicates that the singularities a t  the 
blockage points (or caustics) predicted by the ray solution do not exist and the 
blocked waves will indeed be reflected a t  a different wavelength at those points. 
Smith's (1975) work was concerned with blockage of gravity waves on an irrotational 
flow (though it is not restricted to straight caustics or to steady currents), and we 
wish to enquire whether an analogous phenomenon will also occur with capillary 
waves and in other conditions. 

This question will be resolved here by using a new approach which includes the 
effects of surface tension and a curved mean surface, and yields a uniformly valid 
second-order ordinary differential equation for the surface displacement of the short 
waves. One significant outcome of the present approach is that the uniform 
asymptotic solution of this equation can easily be found and justified in a treatment 
motivated by the results of Smith (1975). This solution and the corresponding 
WKBJ solution are in an explicit form, so that they will be applied to clarify some 
important features of the modulation theory, including the principle of action 
conservation in the situations when g' varies significantly. Another important 
application of the solutions is to clarify the above-mentioned mechanism for 
suppression of freely travelling gravity-capillary waves. 

After the general theory has been established, in $6 the similarity between the 
gravity and capillary blockages will be discussed and, for comparison, the solutions 
of the gravity blockage will be derived separately. Lastly, it will be seen that the 
present solutions can easily be extended to the case when waves propagate on a flow 
of uniform vorticity. 
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FIGURE 2. Definition sketch. 

2. General formulation of short-wave fields 
For the sake of definiteness, we here consider a train of short waves superimposed 

upon a steady, finite-amplitude long wave; the results are, however, valid for waves 
propagating on any steady larger-scale irrotational currents (or even rotational 
currents if a slight modification is made). 

In a frame of reference moving with the long wave, the flow induced by the long 
wave becomes steady, and we may choose a set of orthogonal curvilinear coordinates 
(5,n) in which the undisturbed water surface of the long wave corresponds to a 
coordinate line. The particular coordinate system chosen here (figure 2) is the one 
used by Longuet-Higgins (1953). In  this system the lines n = constant are parallel 
curves and n = 0 corresponds to the undisturbed surface. Thus the scale factor h, in 
the n-direction is independent of the position, and on the other hand, if a t  the surface 
we set the scale factor in the s-direction h, = 1 ,  the variation of h, in the n-direction 
has the simple relation 

n 
R’ h, = 1-- (2.1) 

where Iz is the radius of curvature of the undisturbed surface of the long wave, and 
has the order of magnitude L 2 / A ;  A and L denote respectively the amplitude and 
wavelength of the long wave. This coordinate system will certainly produce 
singularities of the field equation, but since it is not the present purpose to solve the 
complete flow field, the system used here is especially suitable for the later treatment 
of asymptotic approximations. 

In this two-dimensional coordinate system, the Laplace equation for the velocity 
potential q5 of the short wave takes the form 

or (2.3) 
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(2.4) 

and (2.3) transforms into 

Therefore we have the general solution 

$ = f(s-ir)+h(s+ir), 

where f and h as the functions of a single independent variable can be any twice 
differentiable functions. In  our case f and h will oscillate in the s-direction, at least 
in the regions where the ray theory is valid. Thus, one off  and h will grow and 
another will decay exponentially in the r (or n)-direction. It is not difficult to see that 
if the phase of oscillation increases in the positive s-direction, for instance f = ei(s-ir), 
then f(s - ir) will represent the solution satisfying the deep-water boundary condition 
when r + - a. Since, according to figure 1,  both incident and reflected waves have 
phases propagating in the same direction, i t  is possible without loss of generality to 
choose their phases increasing in the positive s-direction. Consequently, we have 
definitely 

from which we immediately obtain 

(2 .5)  $(5 ,  r )  = .f(s - ir), 

a+ - .a$ 
as ar 
-- 1- 

or 

by virtue of (2.4). Recall that h, = 1 a t  n = 0. Thus we finally have 

The derivation of relation (2.6) is exact within the deep-water assumption; the 
latter, however, does not impose any serious restriction in application of the theory, 
because the waves under consideration propagate on a larger-scale flow, therefore 
almost always being on deep water. The above relation will later be applied to 
combine the two surface boundary conditions into one equation. 

The exact kinematical boundary condition in the curvilinear coordinates is 

(2.7) 

expressing the requirement of zero flow through free surface. In (2.7), 7 is the surface 
displacement of the short wave in the n-direction as shown in figure 3;  U and W 
represent the velocity components of the long-wave field in the s- and n-directions 
respectively. We now assume that the slope of the short wave is very small, so that 
after substitution of (2.1) and Taylor series expansions about n = 0, equation (2.7) 
can be approximated by 

- +  

a7 a? a+ aw 
-+U---=7;1-- at  n = 0 ,  
at as an an 
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FIGURE 3. Definition sketch. 

neglecting the nonlinear short-wave terms. I n  (2.8), WI,,, was also neglected. It is 
zero in thc curvilinear coordinates in the absence of the short-wave disturbance, but 
will be of second order in the slope of the short wave in the present case, as required 
to balance the mean value of the nonlinear terms of short waves in (2.7). This term 
corresponds to  a mean mass flux across the undisturbed surface of the long wave 
suggested by Hasselmann (1971). On the other hand, the term qaW/anl ,~ ,  is 
O((a/Z) (AZ/L2)) (a  and 1 represent respectively the typical amplitude and wavelength 
of the short wave), which is intimately related to the modulation of the short waves 
by the longer one, and is not negligible in the following discussion. It is also 
interesting to notice that in this approximation we do not require AIL to be small, 
because no linear term of the short wave with higher order in AIL has been neglected. 
In  other words, the underlying long waves can be of finite amplitude. 

From the continuity equation in curvilinear coordinates, we also have 

at  n = 0, 
aw au 
an as 
_ -  - -- 

because h, I,=,, = 1 .  Hence an approximate kinematical boundary condition for the 
linear short-wave field superimposed upon a steady long, finite-amplitude wave can 
finally be written as 

a7 a7 a$ au 
-+U---+r,- at as an as = 0 at n = 0. (2.9) 

An analogous approximation for the dynamical boundary condition can also be 
found. At first, from the condition of a constant atmospheric pressure and Bernoulli's 
equation, we have exactly 

(2.10) 

where 6 and 6 are respectively the surface elevation and slope induced by the long 
wave (figure 3), and F is the curvature of the instantaneous surface. The surface- 
tension term after expansion can be reduced to 

(2.11) 
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where x’ measures the distance in the horizontal direction (see figure 3 for the 
difference between x and x’). Notice that in (2.11) the terms 

are cancelled out after the variations of yand 7 in space are all expressed by their 
derivatives with respect to x’ and s respectively, otherwise the above approximation 
will be insufficient for finite-amplitude long waves. We also recognized that it is alax’ 
instead of a/ax which represents the correct operator for calculating the rate of 
change of yin space, because the changes of x and the position where Cis measured 
do not exactly equal each other. Now substituting (2.1) and (2.11) in (2.10), 
expanding the resulting equation, and neglecting the higher-order terms in a l l ,  we 
obtain 

(2.12) 

where g’ = gcos8+V/R (2.13) 

is the effective gravitational acceleration suggested by Phillips (1981). In (2.13), the 
term UaUlan is replaced by P / R  because aU/an = U/R in an irrotational flow. 

In (2.12), without the short-wave disturbance the sum of the terms in the first 
square brackets is constant on account of a constant atmospheric pressure, but in the 
present case it may vary to balance a non-zero mean value of the nonlinear terms of 
the short wave, which implies a mean pressure acting on the boundary of the long- 
wave field and therefore a modification to the latter. However, we here neglect all the 
nonlinear effects of the short wave, therefore from (2.12) we have for the short-wave 
motion 

(2.14) 

Equations (2.9) and (2.14) are the two approximate boundary conditions for linear 
short waves propagating on a steady finite-amplitude long wave, or on a steady 
larger-scale irrotational current. However, no two-scale approximation has so far 
been made. We shall next combine the two equations (2.9) and (2.14) into one for the 
surface displacement 7. To accomplish this, it  is sufficient to take advantage of the 
fact that the apparent frequencies no of the incident and reflected waves are the 
same. Therefore the time-dependent parts of the solutions for 7 and @ can be 
separated and represented by the factor exp ( -in,, t ) .  Consequently the two boundary 
conditions (2.9) and (2.14) can be rewritten as 

and 

a7 a$ au 
as an as -ino7+U---+7- = 0, 

Differentiation of (2.16) produces 

(2.15) 

(2.16) 

(2.17) 
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Scale ratio Magnitude Physical significance 

a l l  6 1  Wave slope of short wave 
= l  Wave slope of long wave 
61 Ratio of two lengthscales 
61 Rate of modulation 

AIL  
1lL 

AlIL2 

TABLE 1. Magnitudes of the scale ratios 

In  (2.17) a new term 7ag'/as is introduced and it follows from (2.13) and figure 3 
that 

which is of order (a/E) (AZ/L2) (AIL) and should not be neglected when the underlying 
long wave is of finite amplitude. Next, from (2.6) and (2.15), 

Substitution in (2.17) for and expanding yields finally 

evaluated a t  n = 0. In obtaining (2.18), the terms iyUa2U/as2 and ir/(aU/i3s)2 with 
orders ( a l l )  ( A l / L 2 )  (Z/L) and (a l l )  (AZ/L2)2 respectively are neglected, because we 
will later calculate the uniformly valid asymptotic solution only to O( (a l l )  (AZ/L2)). 
Thus (2.18) represents a two-scale approximation for Z/L < 1. The assumed 
magnitudes of all the scale ratios mentioned above are summarized in table 1 for 
reference. 

Equation (2.18) with y =l 0 is a third-order ordinary differential equation for 7 
only, in which the influence of the long wave on the short wave is implied by the 
slowly varying coefficients involving U and g' as well as their derivatives. Such an 
equation in general cannot be solved exactly, and no systematic method exists to 
obtain its asymptotic solution describing the blockage process. However, the 
suggestion of decomposing a higher-order equation and from it to  extract a lower- 
order one in an asymptotic analysis has been made by Turrittin (1952). Since in the 
case of blockage, only a pair of incident and reflected waves is involved, we shall in 
the next section extract from (2.18) a second-order differential equation describing 
this pair of waves. One may therefore expect that  the resulting equation can fully 
describe the blockage phenomenon as well as be virtually solvable. 

In  the coming discussion, we replace the symbols ( s ,n)  by ( 2 , ~ )  to make the 
notation more conventional. Accordingly, (2.18) can be written as 

ax3 T-J2lnZ7 y ax2 y Y ax ax y l (  ax "'1 ax 
_- a37 i---- 2 n , ~ + g ' + 3 i ~ -  --- -ini+2n0-+- V = O  a t  z = o .  

(2.19) 
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3. The equation coupling the incident and reflected waves 
The procedure of decomposition starts by rewriting (2.19) as an equivalent first- 

order system of differential equations. This is done by introducing the higher 
derivatives of the dependent variable 7 as additional unknown functions. Therefore 
in matrix notation we define a column matrix 

f i =  [j 
(in the following discussion we shall use the shorthand notation 7' = aq/ax, q'' = 
i3'7/i3x2, k' = ak/ax ,  etc. at certain places), then equation (2.19) takes on the concise 
form 

(3.2) fi' = (B, + B,) i f , 
with its coefficient matrices 

0 1 0  

[d, d, d,] 
B,= 0 0 1 and B,=  0 0 0 , (3.3) [.f, :5 11 

where 
n2 1 

Y Y 
d, = -i?, d, = -(2n,U+g'), d, = i--, 

(3.4) 

Notice that in (3.2) the second square matrix B, is deliberately separated from B, 
and involves only smaller quantities ; this treatment will later be found very helpful. 

Now if both matrices B, and B, are block-diagonalized into two diagonal blocks 
of orders 1 and 2, then the original system (3.2) can be split into two uncoupled 
systems of orders 1 and 2.  This might be achieved by a transformation of the 
dependent variable i f , such as 

if = Sy, (3.5) 

where S is a 3 x 3  matrix and remains to be defined. In order to determine an 
appropriate S, we first substitute (3.5) into (3.2), which becomes 

Sy' + S' j i  = (B, + B,) sy. 
Multiplying both sides by the inverse matrix S-', we have a new differential equation 

with 

Y' = (C, + C,) j i ,  

C, = S-'B,S 

and C, = S-lB, S - S-lS'. (3.8) 

in (3.6), the new second matrix C, also involves only smaller quantities, for the 
differentiation S' increases the order by one level as S is presumably composed of 
slowly varying coefficients. Expression (3.7) represents a similarity transformation of 
the square matrix B,. It turns out that if each column of the transformation matrix 
S consists of the components of each different eigenvector of B,, then the new matrix 
C, in (3.7) will be diagonal as required. 

5 FLM P I 7  
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From (3.3) the eigenvalues A,, A, and A, of 6, satisfy 

[ - A  1 0 
0 - A  1 

0 = det (43,-A/) = 

= -A3+d3  A2+d2  A +d,, (3.9) 

where / is the unit matrix. Equation (3.9) is a cubic polynomial; its three solutions 
have the following relations : 

(3.10) 1 A,  + A, + A, = d,, 

A, A,  A, = a,. 
A, A, + A, A,+ A 3  A1 = -d, 

It is interesting to  notice that there are closed relations between A, and the three 
wavenumbers k, satisfying the dispersion relation 

no = (g’k+yk3)i+Uk. 

An expansion of the above equation yields 

u2 g’+2n0U n2 

Y Y Y 
k3 -- k2 + k - - 2  = 0. 

Comparison with (3.9) and (3.4) immediately leads to 

(3.11) 

A,=ikj for j =  1,2 ,3 .  (3.12) 

(The third solution k, corresponds to  the intersection of the curve c = - (g’k+yk3)i 
with the straight line (1.3) in figure 1,  and therefore represents a wave intrinsically 
propagating downstream, though with the same apparent frequency no.) The closed 
relations between A j  and k, are certainly not accidental, which is encouraging for the 
current approach. 

By using (3.10) and the ordinary procedure for calculating eigenvectors, we may 
obtain the three eigenvectors of B, 

Consequently the appropriate transformation matrix S is 

(3.13) 

From (3.13) we may calculate the inverse matrix S-l as well as d e t S  and, as 
mentioned previously, upon choice of the specific form (3.13) of the transformation 
matrix, the new matrix C, in (3.7) becomes diagonal. Actually, the diagonal elements 
are the eigenvalues hi which are invariants of the matrix. Therefore we have 

C,=S-lB,S= 
0 0 A, 

(3.14) 
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So far we have only succeeded in block-diagonalizing the first square matrix of 
(3.6). On substituting S, S-' and the derivative S' into (3.8), the second coefficient 
matrix is obtained : 

C, = S-lB, 

Obviously C, is not block diagonal, therefore another transformation of the 
dependent variable 

y =  TC (3.15) 

is needed. We now assume the transformation matrix 

T =  T , + T , + . . . ,  (3.16) 

which represents an asymptotic expansion such that 5 are terms of successively 
smaller order in the relevant small parameters. However, for the present purposes 
only the first two terms T, and q are required to achieve the same level of 
approximation as we have in $2. Substituting (3.15) and (3.16) into (3.6) we have 

(T ,+T ,+  . . . ) F  = [(C,+C,)(T,+T,+ . . . ) - (C+T;+ .  . . ) ] E .  (3.17) 

If the resulting differential matrix equation is represented by 

s" = (Do+Dl+ ...)c, (3.18) 

then expanding and equalizing the terms of equal order to zero lead to the recursion 
formulae 

(3.19) 

T, D,+ T, Do = Co T,+ C, T,- C. (3.20) 

In obtaining (3.20), recall that each differentiation of the coefficients increases the 
order by one. 

From (3.19), if we set T,, = I, the unit matrix, then 

A, 0 0 
D o = C o = [ O  0 A, 0 A, 0 1 .  (3.21) 

In other words, the first diagonal matrix remains unchanged in the latter 
transformation. In  this circumstance, equation (3.20) can also be simplified to 

Dl = CoT,-T,Co+Cl .  (3.22) 



126 J.-H. Shyu and 0. M .  Phillips 

Now the aim is to determine T, such that 0, can become block diagonal. The 
technique for accomplishing this was described by Wasow (1985). By using this 
technique, we finally obtain 

1 
de t. S 

T , = -  

0 

0 

" -" [d, + d, A, 

[d, + d, A, h,-h, (3.23) 

The fitness of (3.23) can easily be verified by substituting it, as well as C, and C,, into 
(3.22), giving 

(3.24) which is indeed block diagonal. 
Since both matrices 0, and 0, are now transformed into two diagonal blocks of 

orders 2 and 1, the system (3.18) with the neglect of the higher-order coefficient 
matrix can be formally split into two uncoupled systems of orders 2 and 1. We may 
first set the column matrix 

then the substitution of (3.21) and (3.24) into (3.18) produces two systems, one of 
which is the first-order equation for E, :  

or equivalently [ Z - W , + E , ) ] ~ ~  a = 0, 

with (Az-A1) [d, + d, A, -Aj(2n3 -A ,  -&)I .  det S 
E ,  = 

(3.25) 

Next, an inverse transformation from c t o  7 will be performed. From (3.5), (3.15) and 
(3.16) we have the following relation : 

I =  S(T,+ T , ) f .  
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Thus an inverse transformation yields 

= (T,  + 7yS-lfj. 

By a straightforward calculation, we obtain 

with 
A2A;-A A, A,A;-A,A; 

E, = det S(A, A; -A ,  A;) + 27r1+ 772 
&--A1 

(3.26) 

+A; A i - A ;  
El = detS(A;-hi)+- A,-A, TI+- A,-A, 772 

E,  = detS(A,-A,)+- A,-& A 3 - A 2 n 1  

A,-& 712 

where 111 = (4 +d, 4) (A, -4) + (4 -h,)2h; ,  

772 = (d,+d,h,)(h,-h,)-(h,-h,)~h~. 

Substitution into (3.25) yields 

This equation is equivalent to the original third-order differential equation (2.19) if 
we neglect those higher-order terms in the asymptotic expansion. However, the 
present equation has been factorized; and in order to study the reflection 
phenomenon we may seek the solutions satisfying the second-order differential 

E , f ’ + E , $ + E , q  = 0. equation 

Division by E,, and the neglect of higher-order terms in IIL, leads to 

q”+ [ - i(k, + k, )  + &] ++ [ - k ,  k2 +P] 7 = 0, (3.27) 

where (3.28) 

(3.29) 

In  (3.27)-(3.29), hj have been replaced by kj according to (3.12). 
Equation (3.27), especially its dominant terms, indicates that its two independent 

solutions correspond to the k, and k,  components. Furthermore, if k, and k, represent 
a pair of the anticipated incident and reflected waves (figure l ) ,  then it can be proved 
that the singular properties of k ,  and k ,  at  the blockage point are completely offset 
in (3.27) so that it is essentially regular a t  the blockage point. Equation (3.27) as a 
rigorous two-scale asymptotic approximation is therefore uniformly valid. We also 
note that further decomposition of (3.27) could be continued, but will result in two 
first-order differential equations, both singular a t  the blockage point ; and this is 
pointless for the present purpose, since the combination of the two solutions is our 
primary interest. 
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4. Solutions of a reflected linear wave 
There are many works which provide uniformly valid asymptotic solutions for 

second-order ordinary differential equations with slowly varying coefficients (see, for 
example, Olvcr 1974). However, since the treatment for each equation is slightly 
different and since for the present purposes only the leading terms in the asymptotic 
expansion of the solution are required, we shall here develop a quick and clear 
derivation suggested by Smith’s (1975) results. 

First, we eliminate the first derivative term from (3.27) by a change of the 
dependent variable 7 ,  such that 

7 = w(x) e-inot exp { --; I[ -i(Icl + k,) + &] dx} , (4.1) 

where v(x) is the new dependent variable. Now, substituting (4.1) into (3.27), 
neglecting higher-order terms of approximation involving k:, kg, d; or d; ,  and also 
crossing out the common factor, we obtain 

w”+w(H+G) = 0, (4.2) 

where H = { ( k ,  - k, ) , ,  (4.3) 
-1 

G =  [ i ( k 3 - ~ k 2 - ~ k , ) d , - ( ~ k , k 3 + ~ k 2 k 3 - k ,  k 2 ) d ,  
(k3 - k,) (k3 - k,) 

-i(Ic3- Ic,) ($%, + ik,-Ic,) k’, - i(k3 - Ic,) ($c, +& - k,) k i ] .  (4.4) 

Equattion (4.2) can be proved to be still regular a t  the blockage point, and from 
Smith’s (1975) results, we may expect that  

TJ zAoAi(-y)-CoAi’(-r), (4-5) 

where 

For the sake of definiteness, we have taken x = 0 to be the blockage point and 
assumed that H > 0 for x > 0. In (4.5)’ Ai and Ai’ represent the Airy function and 
its derivative ; the former satisfies the equation 

d2Ai ( - r )  
dr2 

+rAi ( - r )  = 0. (4.7) 

The fitness of (4.5) and (4.6) can easily be verified by substituting them into (4.2), 
which results in dZTJ d2A d2C, 

- + + ( H + G )  = +Ai(--r)--Ai’(-r) dx2 (4.8) dx2 dx 

as Ai”( - T )  is eliminated in favour of - r  Ai ( - T ) .  The differences between (4.2) and 
(4.8) are insignificant, because the coefficients A ,  and C0 have been separated from 
the rapidly varying parts of the solution -the new variable v also fulfills the condition 
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of slow modulation (but would not do so if r contained a very high power of H or some 
exponential functions like exp ( jr Hidz)). This and the fact that both A ,  and C, are 
regular a t  the blockage point ensure that the second derivatives of A,, and C, are 
negligible everywhere when compared with H and G. We also note that though H 
vanishes a t  the blockage point, G will in general not vanish at the same point. Thus 
the expressions (4.5) and (4.6) together with (4.1) represent a uniformly valid 
asymptotic solution of 9. 

At points away from the blockage point, Ai ( - r )  and Ai’ ( - r )  can be replaced by 
their asymptotic expansions, which for r large and positive are 

and 

(For r large and negative, both Ai ( - r )  and Ai’ ( - r )  have a decreasing exponential 
behaviour, therefore (4.5) indeed represents the acceptable solution.) Thus from 
(4.5), (4.6) and (4.1) we have 

1 t(-Q-iG/Hi)dx expi kldx-not+in 1 [I 
+( - Q + iG/H;) dx exp i k, dx - no t - ti] (4.9) 1 [I 

for x 9 0. The solution (4.9) actually represents the WKBJ solution, which consists 
of an incident wave k, and a reflected wave k, (here we have chosen k, < k,). Unlike 
(4.5), this solution obviously fails a t  the blockage point where H = 0, but it has 
provided the relative magnitudes and phases of the incident and reflected waves (an 
irrelevant constant common factor was neglected from (4.9)). Consequently, we have 
the local amplitudes 

(4.10) 

Notice that G is pure imaginary while H and Q are real. 
For individual incident and reflected waves, it can be shown that the variation of 

a described in (4.10) satisfies the action conservation principle (which was first 
established by Bretherton & Garrett 1968 for a general class of situations, but the 
latest proof of it for the propagation of linearized short waves on a longer wave of 
finite amplitude was given by Henyey et al. 1988). Since it involves a great deal of 
algebraic manipulation, a proof is described in Appendix A. From (A 10) and (A 11) 
we have 

a 
- ax [ (U+Cg,) - - l  :j = 0, ~ [ ( . + C g 2 ) ~ ] = 0 ,  (4.11) 

which in the present case with a steady larger-scale flow indeed represent the action 
conservation equation. Thus for each component, the present WKBJ solution is 
consistent with the earlier ray solution. However, it should be emphasized that the 
above solution and the proof of (4.11) have incorporated the influence of a variable 
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eRective gravity g', and provide deeper insight into the nature of wave modulation. 
Expansion of (4.11) yields 

ax a i') - - " ( U + C , ) E ] + ( U + C , ) E -  - = 0. c ax 
l a  

(4.12) 

(The subscripts 1 and 2 have been dropped for a general discussion.) Since u = 
(g'k+yk3)i and C, = aa/ak,  we have further 

As explained earlier, the term ag'lax cannot be neglected if the slope of the 
undisturbed surface changes significantly. In fact, in Appendix A, the action- 
conservation equation (4.11) is shown to be correct even when ag'/ax is included. 
Equation (4.12) can be written as 

a 1 
-[(U+C,)E]--(U+C,)E c -+--- = 0. ax U [ g;: Z] 

From (A 9), the differentiation ak/ax  can be further expressed as 

k aU 1 1 kag' _ -  - dk 
ax u+c, ax 2 U + C ,  ax '  

and substitution in (4.13) results in 

a k au k agi 
ax ax gz ax -[(U+ C,) El +EL',- --;UE - - = 0. 

(4.13) 

(4.14) 

In (4.14), the first and second terms are familiar to us and represent respectively the 
energy flux and the work done by the radiation stress, but the third term is extra. 
It indicates t'hat, if the undisturbed surface has significantly varied slope, an 
additional energy interaction between short waves and long waves will take place ; 
although the wave action is conserved in all cases. 

Next, one may ask whether or not the action is also conserved on reflection of 
gravity-capillary waves from the blockage point. According to  Smith (1975), the 
answer for gravity waves is positive, but this conclusion was drawn from a 
requirement of cancellation of the singularities in the approximate solution. In the 
present approach, this important feature can be demonstrated explicitly. At first, 
from (A 1) and (4.10), the action fluxes of the incident and reflected waves are 

(U+ C ) 5 H - i e x p  [ ( - Q - iG/Hi) dx] ; 

(U+ C ) 3 H-iexp [ ( - Q + icT'/Hi) dx] , 
(4.15) (U+C,)- = g1 k,  0 

g2 k, 0 

in which the constant i p  is omitted simultaneously from both k ,  and k, components. 
Expression (4.15) is rather complicated, but since for each component the right-hand 
side of (4.15) remains constant to the blockage point, we may calculate it a t  the 
convenient position x = 0, a t  which the integrals in (4.15) will vanish. We also note 
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that though the wave action of the WKBJ solution is infinite a t  the blockage point 
x = 0, the action flux remains a finite limit there. Thus (4.15) can be written as 

[ w + C g l p - q  x=o ; 

[ (U+ Cg2) :.-;I . 
(U+C,)- = 

c7 

E (  x=o 

I n  Appendix B, we further prove that 

(4.16) 

and we conclude that the action flux carried by the incident wave towards the 
blockage point equals that carried away by the reflected wave. 

We are indebted to Dr Frank Henyey for pointing out that the above conclusion 
can be drawn directly from a simple and neat argument even without entering into 
the details of the solution. Henyey first defines 

A = $pIm yr*,+q5*Ur+$iQ*q5 , (4.17) 

where asterisk denotes the complex conjugate. From (2.15) and (2.16), it immediately 

(4.18) 
follows that 

--A = o  
aS 

i 1 
a 

exactly. (Recall that (2.15) and (2.16) are themselves exact for linear short waves.) 
Henyey next points out that since 

(4.19) t$ z - i -y ,  3 z iky, 
k as 

in the short-wavelength limit, the function A corresponds to the action flux. 
Therefore, from (4.18) and the fact that A is zero far into the forbidden region, it is 
zero everywhere, so the incoming and outgoing action fluxes are equal. 

The approximations (4.19) are certainly insufficient for clarification of the content 
of A to the desired order. However, one mag instead substitute the more accurate 

.G-  

Then, after a complicated manipulation, we still have 

(4.20) 

in which the cancellation of the interaction terms between the k, and k,  components 
is mainly due to ( 1 . 1 )  and (1.2) as well as (4.11). Thus the function A indeed 
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corresponds to the net action flux of the WKBJ solution if both are calculated to the 
same order. 

Incidently, we notice that since the value of A in the WKBJ solution remains 
negligible everywhere, it is obvious that the errors of such approximation, a t  least in 
amplitude, will not accumulate as x + CO. 

5. Suppression of gravity-capillary waves 
From the above discussion, it is clear that the blockage and reflection phenomena 

can occur to any scale of the water surface wave ; the phenomena can be avoided only 
if the speed of the underlying large-scale flow is less than the minimum of C,, which 
is about 18 cm/s. 

For a very short gravity wave superimposed upon a longer one and propagating 
in the same direction, in the frame of reference moving with the longer wave its 
energy will be swept downstream and may be blocked on the forward slopes of the 
longer wave. I n  such a case, the very short gravity wave will be reflected as an 
extremely short capillary wave (see figure 1) and then be dissipated rapidly. Short 
gravity waves will eventually be erased entirely near the crests of the dominant wave 
as pointed out by Phillips (1981). 

The influence of viscous dissipation can be estimated. When it is taken into 
account, the action conservation equation becomes (see Phillips 1977, 54.7) 

or 

P[ca+C,)f]  = -4vk2--, E 
ax 0- 

4uk2 
(u+ c,) E / U  ax 

Integration yields 

From (5.1) and (A l ) ,  one can calculate the variation of the wave slope ak of a 
dissipating wave train. Figure 4 shows such variations of the incident and reflected 
waves for a specific case. In  figure 4, the relative magnitudes of a, and a2 near the 
blockage point are determined from the relation 

E E2 
(U+C,,)'= - ( U + C g 2 ) - ,  

Ul u2 

because in the vicinity of the blockage point one may expect that the influence of the 
viscous dissipation is only slight for such a short distance and a moderate 
wavelength. However, since the meaning of the wave amplitude becomes vague in 
the vicinity of the blockage point, we do not imply in figure 4 that a and ak tend to 
infinity in this region according to (4.10). 

For comparison, figure 4 also includes the variations of a and ak in the absence of 
viscous dissipation, showing that the reflected wave continually increases in 
steepness in a convergent region as it moves away from the blockage point, though 
its amplitude decreases. However, the viscosity will result in a faster and faster 
decline of a and ak of the reflected wave, in contrast to the incident wave in which 
the dissipation effect is almost imperceptible. 

For a fixed dominant wave, longer wavelets will escape blockage ; the shortest one 
that can continue to  propagate past the crest has been estimated by Phillips (1981). 
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FIGURE 4. Variation of wavenumbers, amplitudes and slopes according to the WKBJ solution (4.9). 
A subscript 1 refers to the incident wave and subscript 2 to the reflected wave. The broken lines 
are the solutions including the viscous effect. The wavelength and slope of the underlying long wave 
are 25.13 cm and 0.4 respectively. The apparent frequency no of the short wave is - 120 rad/s. 
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FIGURE 5 .  Minimum wavelength of the short wave escaping blockage as a function of the long- 

wave wavelength L and slope AK.  
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Here, figure 5 gives a numerical description of the minimum wavelength escaping 
blockage in terms of the characteristics of the dominant wave. In  figure 5 ,  the 
wavelength of the short wave is specified a t  the position a quarter of a wavelength 
from the crest of the long wave, almost a t  the mean water level. We also note that 
the calculations in figure 5 ,  by using the solution of the long-wave field, are correct 
to second order in long-wave slope and take account of the effective gravitational 
acceleration. The results can therefore provide a guide for estimating the range of  
influence of the suppression process. A more accurate estimation can also be achieved 
by using a treatment due to Longuet-Higgins (1987) for precise calculations o f  the 
effective gravity g‘ and the long-wave field of finite amplitude. However, from figure 
5 and Phillips’ (1981) results, short waves with wavelengths of a few centimeters are 
likely to be erased by the successive gravity wave crests if the long-wave slope 
exceeds 0.2. 

6. Gravity blockage phenomenon 
In 94 we obtained the asymptotic solutions for a fairly general case, in which the 

waves can be gravity or capillary, and the underlying larger-scale flow can be any 
steady, irrotational currents (the results with a slight modification can even be 
applied to  a uniform-vorticity flow as will be seen later). To apply the solutions to 
the phenomenon of  gravity blockage, i t  is necessary only to specify a certain positive 
apparent frequency no (see figure 6) and choose the right roots of equation (3.11) as 
the wavenumbers of the incident and reflected waves. Alternatively, one may derive 
ab initio the solutions for the gravity wave, which are much simpler than those for 
gravity-capillary waves. 

When the surface-tension terms are neglected in the original third-order equation 
(2.19), we directly obtain 

We may further simplify this by neglecting the derivative ag’/ax, for in the present 
case one may expect that AIL 4 1. Consequently, we have 

correct to O((a/Z) (AZ/L2)). 
The above equation can be rewritten in a form similar to (3.27) but with simpler 

expressions for the coefficients. In  pure gravity waves. the dispersion relation is 
reduced to 

no = (g’k)i+ Uk. 

Expansion yields 

Thus (6.1) can also be written as 

a217 a7 
a 2 2  ax -+ [ -i(k,+ k , )  +&I-+ [ - k ,  k ,+P]  7 = 0, 

with 
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k 
FIGURE 6. Solutions of the kinematical conservation equation analogous to figure 1, but for 

gravity waves and a positive no. 

Equation (6.3) takes the exactly same form as (3.27), though its two coefficients Q 
and P are much simpler than (3.28) and (3.29). Incidentally, we notice that (3.27), 
derived from a considerably complicated procedure, virtually coincides with the 
result for the present simpler case, derived in a straightforward way. By change of 
dependent variable according to  (4.1), equation (6.3) can also be reduced to the 
normal form 

where 

d2v 
dx2 
-++(H+C) = 0, 

The similarity between (6.5) and (4.2) is again remarkable. However, there exists a 
major difference between the capillary and gravity blockages that should be clarified 
before the results of $4 are applied to the present case. 

I n  $4, we have assumed that the blockage point occurs downstream and the wave 
pattern is confined to the region of x > 0. This, in the event of capillary blockage, 
corresponds to the situation that the waves upon blockage have become even shorter 
to have greater group velocity to overcome the convection. Nevertheless, in the 
present case, the situation is the opposite one (the curve in figure 6 is convex towards 
positive ordinates while the relevant part in figure 1 is concave), so that the solutions 
in $4 are applicable only if the reflected wave is longer than the incident wave and 
the blockage occurs in a divergent region (in the previous case it occurs in a 
convergent zone). I n  the more important case when a longer gravity wave is reflected 
as a much shorter wave of the same type in a convergent region, the wave pattern 
will be confined to the region of x < 0. Consequently, the solution of (6.5) 
corresponding to (4.5) and (4.6) will become 

v x A ,  Ai ( - r )  - C, Ai' ( - r ) ,  (6.7) 
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where 

The adequacy of the above solution can again be verified by the same argument as 
described in $4. Alternatively, one may imagine that the x-axis is initially in the 
opposite direction (the values of H and G will remain unchanged in this exercise), so 
the expressions (4.5) and (4.6) will become available in this situation. Then an inverse 
of the x-axis will directly result in (6.7) and (6.8). 

From the asymptotic expansions of Ai ( - r )  and Ai' ( - r ) ,  one may also obtain the 
corresponding WKBJ solution in this case : 

1 ;( - Q + iG/Hi) dx 

+( - Q - iG/Hi) dx k ,  dx- no t --in] (6.9) 

for x < 0. It is interesting to notice that in (6.9) the phase discontinuity between the 
incident and reflected waves is opposite to that in (4.9). 

An important feature of the above solutions is that they provide explicit formulae 
for computation of the wave profiles. Figure 7,  similar to figure 4, illustrates the 
variations of a and ak of the incident and reflected waves for a specific case, showing 
that, because of the reduction in wavelength and increase in amplitude, the steepness 
of the reflected gravity wave increases significantly. The results in figure 7 are 
calculated from the action conservation equations (4.11) and (5.2) which are 
certainly fulfilled by the present solutions. However, in figure 8, we also calculate the 
instantaneous profile of the water surface as an example of the application of the 
formulae (6.7),  (6.8) and (6.9). These calculations involve some numerical integration 
procedures as well as an evaluation of Ai ( - r )  and Ai' ( - r )  by adding their power 
series term by term in appropriate number. The results clearly indicate that while the 
energy of the incident wave (long-dashed line) propagates upstream, the reflection 
process can very efficiently create choppiness on the sea surface downstream of the 
blockage point. 

For application, it is also interesting to express explicitly the amplitude ratio a,/a, 
of the incident wave to  the reflected wave. From (4.10), (4.15) and (5.2), it follows 
that' 

Hence, for pure gravity waves, substituting the solutions of k, and k ,  derived from 

available in the region where the WKBJ solution is valid. 
We finally note that though our previous discussion has assumed the underlying 

larger-scale flow to be irrotational, the present approach can be extended without 
difficulty to  the case when the underlying flow has uniform vorticity. In  this case, the 
velocity perturbation induced by the short waves remains irrotational, so that the 
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FIGURE 8. Two solutions of the instantaneous profile of the water surface under the same conditions 
as in figure 7 .  The long-dashed line represents the incident wave component in the WKBJ solution. 

1 -  

formulation in Q 2 is still valid, except that the dynamical boundary condition should 
now be derived directly from the momentum equation, instead of Bernoulli's 
equation, to include the effects of uniform vorticity. Recall that Bernoulli's equation 
is an integral of the momentum equation and the former in 92 has been differentiated 
with respect to s to combine with the kinematic boundary condition. Thus the 
existence of uniform vorticity in the mean flow affects the resulting third-order 

I 
I 

Uniform solution 1 - 
)! ,' WKBJ solution _ _ _ _ _  
, I  



138 J.-H. Xhyu and 0. M .  Phillips 

ordinary differential equation (2.19) only to within several extra terms in its 
coefficients. If these terms are included in the parameters d,,dz, . .  . ,d5  in (3.4) 
respectively, then our earlier solutions can still be applied to this case of uniform 
vorticity. From these solutions and the new expressions for the parameters d j ,  one 
can similarly prove that even with strong uniform vorticity, wave action remains 
conserved everywhere including the blockage point, although the dispersion relation 
and the ratio of kinetic energy to potential energy of the linear short waves are 
influenced by vortieity, as pointed out by Teles da Silva & Peregrine (1988). 

7. Conclusions 
We have presented a method for a systematic investigation of the blockage 

phenomenon of surface waves by a largcr-scale flow. The waves can be any linear 
gravity and/or capillary waves, and the undcrlying larger-scale flows can even 
possess uniform vorticity and a finite surface curvature ; the latter may be induced 
by a longer wave of finite amplitude. The method first produces a second-order 
ordinary differential equation for the surface displacement 7 of the short wave, which 
in a rigorous two-scale approximation allows solutions that remain valid to the 
blockage point and to the region beyond, exhibiting decreasing exponential 
behaviour, so that a uniformly valid asymptotic solution can be derived 
straightforwardly. 

Away from the blockage point, the uniform asymptotic solution can be replaced 
by its asymptotic expansion, which is the WKBJ solution but with specified relative 
amplitudes of the incident and reflected waves. From this solution, we clearly 
demonstrated that even with a curved surface and a variable effective gravity g’, the 
action of the short wave is still conserved everywhere including the blockage point. 
We also note that the uniform vorticity in the larger-scale flow will significantly 
influence the dispersion relation and the relation between the short-wave amplitude 
and its energy (or action) density, as pointed out by Teles da Silva & Peregrine 
(1988) ; nevertheless the wave action remains conserved everywhere. 

Gravity-capillary waves, blocked on the forward slopes of a steep, longer gravity 
wave, will be reflected as extremely short capillaries, then dissipated rapidly by 
viscosity. Hence those short wavelets with wavelengths of few centimeters will 
eventually be suppressed near the crests of long dominant waves even without 
breaking, as suggested by Phillips (1981). This phenomenon among others may 
significantly influence the fine structure of the sea surface. 

In the blockage of gravity waves in a convergent zone, the subsequent reflection 
will result in a shortening of the wavelength and increase of the wave height. From 
figure 7, the difference in steepness between the incident and reflected waves a t  a 
fixed point is much greater than the modulations suffered by the incident wave in the 
region between this point and the blockage point. It is well known that waves are 
often broken in a river estuary or near a harbour entrance with an ebbing tide. 
However, from the present discussion, broken water will actually occur downstream 
of the blockage point, contrary to  the earlier assumption that waves necessarily 
break at  the blockage point. 

Dr F. Henyey’s comments and argument have helped u s  to correct a serious 
mistake in our theory, for which we are deeply grateful. The authors also wish to 
thank a referee of an earlier version of the manuscript for pointing out several 
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important works on this problem, including Smith’s (1975) paper. This research was 
supported by the Office of Naval Research under contract N00014-84K-0080. 

Appendix A. Proof that the solution (4.9) fulfills the action conservation 
principle 

The wave action density is 

so that the differentiation of the action flux gives 

From (4.3) and (4.10) we have 

1 [ I ( - Q- iG/Hi) dx a2 = -exp 2 
k2-kl 

for the k,  component, and using (3.28), (4.3) and (4.4) we further have 

1 
- Q - iG/Ht = [2d4 + 2ik, d, + (3k,  - 2k2 - k,) k; - ( k ,  - k,) k i] .  

( k ,  - k2) ( k ,  - k,) 
(A 3) 

Therefore, differentiation and reduction yield 

[2d4+2ik,d,+ (4k,-2k2-2k,) k;].  
2 aa, - 1 

- _ _  
ax ( k 1 - k 2 ) ( k 3 - k 1 )  

Now substituting (3.4) into the above expression and employing (3.10) and (3.12) to 
eliminate k2 and k,, we have 

and the denominator 
k n2 

( k ,  - k,) (k3-  k,) = 2 cF-J-2k i .  (A 5 )  Y $1 

l u  yk2  
U+C, = U+--+- 

2 k  u 
On the other hand, since 

and u = no - Uk,  

we have 1 n2 
k ,  2 k: 

(U+Cgl)-- u1 - - iU2+--+ykl  

The comparison between (A 5 )  and (A 6) also indicates that 
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Therefore, substituting (A4),  (A6) and (A7) into (A2) ,  and carrying out the 
differentiation, we obtain 

(A 8) 
au I ag’ 

ax (U+Cgl)- - 2 p  -2’-----2(U+C ”[ { k ,  ax k ,  ax 
Equation (A 8) can be further reduced by expressing ak,/ax in terms of aU/ax and 

ag’lax. Since from (1.1) and ( S . 2 ) ,  

no = cr+ kU = const. 

and cr = (g ’k+yk3) i ,  

aa ak a l J  
0 = -+ U-+ k -  differentiation yields ax ax ax 

ak 1 kag’  Xl 
= (C, + U )  - + - - -+ k - .  

ax 2 B ax ax 

Thus we h a w  
ak - k aU 1 1 kag‘  
ax u+c, ax 2 u + c , ~  a x ‘  

Substituting (A 9) into (A 8), we finally obtain 

”[ ax (U+ Cg1$5] = 0. 

A similar treatment may also lead to 

-[cn+,,)$] a = 0. 
ax 

This completes the proof. 

Appendix B. Proof of (4.16) 
First, it is useful to write the wavenumbers k ,  and k,  in the forms 

k,  = M - N ,  k ,  = M + N ,  
where N = 0 at  the blockage point x = 0. Then 
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by virtue of (4.3), (A 6), (3.4), (3.10) and (3.12). The cancellation of N from the 
denominator ensures a finite limit as x+O. Consequently 

[(u+cgl,%-q kl 
x=o = [ g - w ) ]  2-0 

Similarly, we may obtain 

[ ( C + C g 2 ) p ]  x=o = -['-("-..)] Y 
x=o . 

Thus we prove that 
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